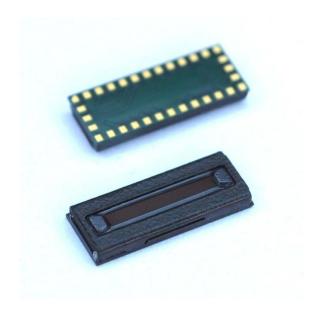


2011-09-02

Doc number: 711-FPC1080

Integration Guide


r: Da

В

Issued by: Page: HSt 1(26)

FPC1080 Integration Guide

Fingerprint Swipe Sensor System

CONFIDENTIAL

Doc number: 711-FPC1080

Doc name:
IntegrationGuide

Rev: Da

B 2011-09-02

Issued by: Page: HSt 2(26)

Contents

1 [Document Control	2
1.1	Revision history	2
1.2	References	2
2 (Overview	3
2.1	General System Description	3
3 (Connections on the FPC1080A and the PCB board FPC5180	4
4 9	Sensor Hardware Requirements	6
4.1	•	
4	4.1.1 Supply voltages	7
4.2	ESD Protection	7
5 9	Sensor Operation Software	7
5.1	•	
5.2	Setting Registers	8
5.3	Image Capture	8
5.4	Navigation	12
5.5	Finger Detect	15
5.6	Sleep Mode	16
6 H	Host System Implementation (SW)	16
6.1	Implementation Requirements	16
7 9	Sensor Ergonomics	17
7.1	Finger Swipe	17
7.2	Phousing Design	20
8 9	Sample Code	21
S	Setting up the sensor parameters (for image capture):	22
9 /	Appendix A – List of Commands	25
10	Appendix B – Register Summary	

1 Document Control

1.1 Revision history

Rev	Date	Changes	Author	Approved
Α	2011-06-05	New Document	HSt et al	
В	2011-09-02	Much new info, and new recommended parameter set.	ESe	HSt

1.2 References

Ref No	Title	Revision
1	FPC1080Demo_QuickReference	F
2	710-FPC1080A_Product-specification	F

FINGERPRINTS IntegrationGuide Integratio

Data command (0xC4). It is also possible to start capturing the image data of a new frame at the same time as the current is read by using the Read and Capture Image (0xCC) command.

Figure 5 Block diagram of basic image capture.

5.3.2 Image Capture with Extended Hardware Support

The basic idea of the extended hardware support is to check the amount of translation between the current frame and prior frame before uploading the current one. If this translation is too small it makes sense to refrain from uploading the current frame and instead immediately capture a new one and check if there is more translation between this newer frame and the first one. The objective of this is of course to minimize the amount of redundant image data acquired.

To enable the extended hardware support (aka the "Smart Sensor Mechanism") the first bit of the fngrDriveConf (0x1C) register should be set. A first image is then captured as usual with the Capture Image (0xCO) command. This image is to be used as reference point to which translations will be estimated by the hardware. To set is as a reference; send the Set Smart Sensor Reference (0x48) command. This frame can now be read using the Read Image Data command (0xC4) or the Read and Capture Image (0xCC) command. When a second frame is captured it is now possible to check its translation with respect to the first one by using the Read Smart Sensor Data (0x10) command. If the translation is deemed sufficient first reset the reference to this very frame (using the Set Smart Sensor Reference (0x48) command) and read it either using the Read Image Data command (0xC4) or the Read and Capture Image (0xCC) command. There is now a new reference and the process of capturing and checking the translation can begin again. On the other hand, if the translation is deemed too small then the read can be skipped and the old reference should be kept. Just proceed with a new Capture Image (0xCO) command.

CONFIDENTIAL

2011-09-02

Date:

Doc number: 711-FPC1080

Doc name:

IntegrationGuide

Issued by: Page: HSt 14(26)

В

1. Read the interrupt register WITHOUT clearing it using the *Read Interrupt with No Clear* (0x18) command.

- 2. Read the smart sensor data using the *Read Smart Sensor Data (0x10)* command.
- 3. Clear the interrupt using the *Read Interrupt with Clear (0x64)* command.
- 4. Perform a dummy smart sensor data read; again using the *Read Smart Sensor Data (0x10)* command but disregarding the result.

In case the interrupt received is a *Finger Lost Interrupt* the sensor will go idle after the interrupt is cleared. The SmartSensor data received in action item 2 above has the following format:

Data Bit(s)	Name	Function/Coding				
39:38	Not used	'0' when read.				
37		Y-translations sign bit.				
36		X-translations sign bit.				
35		Long click detected.				
34		Short click detected.				
33		Motion Estimation Correlation bit 9.				
32		Motion Estimation Correlation bit 8.				
31:24		Motion Estimation Correlation bit 7 down to 0.				
23:16		Motion counter				
15:8		Y-translation, absolute value.				
7:0		X-translation, absolute value.				
- S	- Seven bytes access: byte 1: address, byte 2: dummy, byte 3-7: smart sensor data					

Seven bytes access: byte 1: address, byte 2: dummy, byte 3-7: smart sensor data
 5 databytes are received. The last received byte corresponds to bits0:7.

Table 4: Smart Sensor data received from the sensor upon a Read Smart Sensor Data command.

The figure below gives the general flow for handling the sensor in navigation mode.

CONFIDENTIAL

Doc number: 711-FPC1080

Doc name:
IntegrationGuide

Rev: Date:

B 2011-09-02

Issued by: Page: HSt 25(26)

9 Appendix A – List of Commands

	Code/"Address"			
Command	Hex	Dec	Bin	Description
Capture image	C0	192	11000000	Capture new image. Memories are not swapped and memory
				address is cleared by the Main Controller block.
				One byte access, only the command is transmitted.
Read and capture image	CC	204	11001100	Memories are swapped and memory address is cleared before the
				read and the new image capture is started.
				The first valid data is received after a dummy byte, i.e. the 3 rd byte
				(command + dummy byte first).
				The read continues until csN is de-asserted.
Read image data	C4	196	11000100	Memories are swapped and memory address is cleared before the read is started.
				The 1 st valid data is received after a dummy byte, i.e. the 3 rd byte
				(command + dummy byte first).
				The read continues until csN is de-asserted.
Set smart sensor reference	48	72	01001000	Set smart sensor reference (save motion estimation data).
				One byte access, only the command is transmitted.
Read smart sensor data	10	16	00010000	Read five byte smart sensor data, see register smartSensData. Seven
				bytes access: byte 1: address, byte 2: dummy, byte 2-7: smart
				sensor data
Read interrupt with clear	64	100	01100100	Read interrupt register and clear it.
				Two byte access, command and interrupt data.
Read interrupt with no	18	24	00011000	Read interrupt register. The register is not cleared.
clear				Two byte access, command and interrupt data.
Finger present query	20	32	00100000	Check if a finger is present.
				One byte access, only the command is transmitted.
Wait for finger present	24	36	00100100	Continue check for a finger until a finger is present.
				One byte access, only the command is transmitted.
Activate sleep mode	28	40	00101000	Go to Sleep Mode.
				One byte access, only the command is transmitted.
Activate deep sleep mode	2C	44	00101100	Go to Deep Sleep Mode.
				One byte access, only the command is transmitted.
Activate navigation mode	30	48	00110000	Go to Navigation Mode.
				One byte access, only the command is transmitted.
Activate idle mode	34	52	00110100	Go to Idle Mode. Works like a "reset" for the system.
				One byte access, only the command is transmitted.
Read from/Write to				See each register below. Command = register value. Note that data
registers				is written and read simultaneously, in the same operation.

Doc number: Rev: Date:

711-FPC1080 B 2011-09-02

Doc name: Issued by: Page:
IntegrationGuide HSt 26(26)

10 Appendix B - Register Summary

The following table shows the available registers, and their address. For a complete description of each register, please refere to the FPC1080 Product Specification document [3].

Register name (address)	Address
fngDwnMin	0x38
fngrDwnMid	0x4C
fngerDwnMax	0x3C
fngrDetThreshold	0x5C
fngrLostThreshold	0x60
fngrLostCntr	0x6C
fngrDownCntr	0x70
fdPxlSum	0x68
sleepCntr	0x74
navCntr	0x80
fngrDetCntr	0x90
colRdSpeed	0x50
dXThreshold	0x54
dYThreshold	0x58
fpcInterrupts	0x18 or 0x64
fpcStatus	0x14
fpcDebug	0xD0
fngrDriveConf	0x1C
tstPattern1Xreg	0x78
tstPattern2Xreg	0x7C
smartSensData	0x10
hwID	0x9C
fpcConfig	0x44
biasMode	0x40
ADCOffset	0xA0
pxlSetup	0xA8
imgRowSel	0xAC
ADCSetup	0x88

Asia

联系方式

智美康科技 (深圳) 有限公司

ZHIMK TECHNOLOGY (SHEN ZHEN) CO.,LTD.

Shenzhen, China 518033

Tel: +86 755 8303 5030/8989 4565, 13048972929

Email: liulijun18@126.com

www.zhimk.com.cn